Skip to main content
Log in

Contributions of the Bering Strait throughflow to oceanic meridional heat transport under modern and Last Glacial Maximum climate conditions

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Paleo reconstructions and model simulations have suggested the Bering Strait plays a pivotal role in climate change. However, the contribution of the Bering Strait throughflow to oceanic meridional heat transport (OMHT) is about 100 times smaller than the OMHT at low latitudes in the modern climate and it is generally ignored. Based on model simulations under modern and Last Glacial Maximum (LGM, ~21 ka; ka=thousand years ago) climate conditions, this study highlights the importance of the Bering Strait throughflow to OMHT. The interbasin OMHT induced by the Bering Strait throughflow is estimated by interbasin-intrabasin decomposition. Similar to barotropic-baroclinic-horizontal decomposition, we assume the nonzero net mass transport induced by interbasin throughflows is uniform across the entire section, and the interbasin term is separated to force zero net mass transport for the intrabasin term. Based on interbasinintrabasin decomposition, the contribution of the Bering Strait throughflow is determined as ~0.02 PW (1 PW=10 15 W) under the modern climate, and zero under the LGM climate because the closed Bering Strait blocked interbasin throughflows. The contribution of the Bering Strait throughflow to OMHT is rather small, consistent with previous studies. However, comparisons of OMHT under modern and LGM climate conditions indicate the mean absolute changes are typically 0.05 and 0.20 PW in the North Atlantic and North Pacific, respectively. Thus, the contribution of the Bering Strait throughflow should not be ignored when comparing OMHT under different climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bard E. 2002. Climate shock: abrupt changes over millennial time scales. Physics Today, 55 (12): 32–38.

    Article  Google Scholar 

  • Batchelor G K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, Britain. 658p.

    Google Scholar 

  • Briegleb B P, Bitz C M, Hunke E C, Lipscomb W H, Holland M, Schramm J L, Moritz R E. 2004. Scientific Description of the Sea Ice Component in the Community Climate System Model, Version Three. Climate Andglobal Dynamics Division, Jhr National Center for Atmospheric Research, Boulder, Colorado, USA.

    Google Scholar 

  • Bryan K. 1962. Measurements of meridional heat transport by ocean currents. Journal of Geophysical Research, 67 (9): 3 403–3 414.

    Article  Google Scholar 

  • Bryden H L, Imawaki S. 2001. Ocean heat transport. International Geophysics, 77: 455–474.

    Article  Google Scholar 

  • Collins W D, Bitz C M, Blackmon M L, Bonan G B, Bretherton C S, Carton J A, Chang P, Doney S C, Hack J J, Henderson T B, Kiehl J T, Large W G, McKenna D S, Santer B D, Smith R D. 2006. The community climate system model version 3 (CCSM3). Journal of Climate, 19 (11): 2 122–2 143.

    Article  Google Scholar 

  • Czaja A, Marshall J. 2006. The partitioning of poleward heat transport between the atmosphere and ocean. Journal of the Atmospheric Sciences, 63 (5): 1 498–1 511.

    Article  Google Scholar 

  • Dickinson R E, Oleson K W, Bonan G, Hoffman F, Thornton P, Vertenstein M, Yang Z L, Zeng X B. 2006. The community land model and its climate statistics as a component of the community climate system model. Journal of Climate, 19 (11): 2 302–2 324.

    Article  Google Scholar 

  • Fasullo J T, Trenberth K E. 2008. The annual cycle of the energy budget. Part II: meridional structures and poleward transports. Journal of Climate, 21 (10): 2 313–2 325.

    Google Scholar 

  • Ferrari R, Ferreira D. 2011. What processes drive the ocean heat transport? Ocean Modelling, 38 (3–4): 171–186.

    Article  Google Scholar 

  • Freeman E, Skinner L C, Tisserand A, Dokken T, Timmermann A, Menviel L, Friedrich T. 2015. An Atlantic–Pacific ventilation seesaw across the last deglaciation. Earth and Planetary Science Letters, 424: 237–244.

    Article  Google Scholar 

  • Ganachaud A, Wunsch C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 (6811): 453–457.

    Article  Google Scholar 

  • Gill A E. 1982. Atmosphere–Ocean Dynamics. Academic Press, New York, USA. 662p.

    Google Scholar 

  • Gu D F, Philander S G H. 1997. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 (5301): 805–807.

    Article  Google Scholar 

  • Harington C R. 2005. The eastern limit of Beringia: mammoth remains from banks and Melville islands, northwest territories. Arctic Institute of North America, 58 (4): 361–369.

    Google Scholar 

  • Hatzianastassiou N, Matsoukas C, Hatzidimitriou D, Pavlakis C, Drakakis M, Vardavas I. 2004. Ten year radiation budget of the earth: 1984–93. International Journal of Climatology, 24 (14): 1 785–1 802.

    Article  Google Scholar 

  • Hazeleger W, Seager R, Cane M A, Naik N H. 2004. How can tropical Pacific Ocean heat transport vary? Journal of Physical Oceanography, 34 (1): 320–333.

    Article  Google Scholar 

  • Hu A X, Meehl G A, Han W Q, Abe–Ouchi A, Morrill C, Okazaki Y, Chikamoto M O. 2012a. The Pacific–Atlantic seesaw and the Bering Strait. Geophysical Research Letters, 39 (3): L03702.

    Book  Google Scholar 

  • Hu A X, Meehl G A, Han W Q, Otto–Bliestner B, Abe–Ouchi A, Rosenbloom N. 2015. Effects of the Bering Strait closure on AMOC and global climate under different background climates. Progress in Oceanography, 132: 174–196.

    Article  Google Scholar 

  • Hu A X, Meehl G A, Han W Q, Timmermann A, Otto–Bliesner B, Liu Z Y, Washington W M, Large W, Abe–Ouchi A, Kimoto M, Lambeck K, Wu B Y. 2012b. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proceedings of the National Academy of Sciences of the United States of America, 109 (17): 6 417–6 422.

    Article  Google Scholar 

  • Hu A X, Meehl G A, Han W Q, Yin J J. 2011. Effect of the potential melting of the Greenland Ice Sheet on the Meridional Overturning Circulation and global climate in the future. Deep Sea Research Part II: Topical Studies in Oceanography, 58 (17–18): 1 914–1 926.

    Book  Google Scholar 

  • Hu A X, Meehl G A, Han W Q. 2007. Role of the Bering Strait in the thermohaline circulation and abrupt climate change. Geophysical Research Letters, 34 (5): L05704.

    Book  Google Scholar 

  • Hu A X, Meehl G A. 2005. Bering Strait throughflow and the thermohaline circulation. Geophysical Research Letters, 32 (24): L24610.

    Book  Google Scholar 

  • IOC, SCOR, IAPSO. 2010. The International Thermodynamic Equation of Seawater—2010: Calculation and Use of Thermodynamic Properties. Manuals and Guides No. 56, Intergovernmental Oceanographic Commission, Paris. p.196.

    Google Scholar 

  • Lippold J, Luo Y M, Francois R, Allen S E, Gherardi J, Pichat S, Hickey B, Schulz H. 2012. Strength and geometry of the glacial Atlantic meridional overturning circulation. Nature Geoscience, 5 (11): 813–816.

    Article  Google Scholar 

  • Lynch–Stieglitz J, Adkins J F, Curry W B, Dokken T, Hall I R, Herguera J C, Hirschi J J M, Ivanova E V, Kissel C, Marchal O, Marchitto T M, McCave I N, McManus J F, Mulitza S, Ninnemann U, Peeters F, Yu E F, Zahn R. 2007. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316 (5821): 66–69.

    Article  Google Scholar 

  • MacDonald A M, Baringer M O. 2013. Ocean heat transport. International Geophysics, 103: 759–785.

    Article  Google Scholar 

  • MARGO Project Members. 2009. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geoscience, 2 (2): 127–132.

    Article  Google Scholar 

  • McCreary Jr J P, Lu P. 1994. Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. Journal of Physical Oceanography, 24 (2): 466–497.

    Article  Google Scholar 

  • McDougall T J. 2003. Potential enthalpy: a conservative oceanic variable for evaluating heat content and heat fluxes. Journal of Physical Oceanography, 33 (5): 945–963.

    Article  Google Scholar 

  • Okumura Y M, Deser C, Hu A X, Timmermann A, Xie S P. 2009. North Pacific climate response tofreshwater forcing in the subarctic North Atlantic: oceanic and atmospheric pathways. Journal of Climate, 22 (6): 1 424–1 445.

    Article  Google Scholar 

  • Olbers D, Willebrand J, Eden C. 2012. Ocean Dynamics. Springer, Berlin, Germany. 703p.

    Book  Google Scholar 

  • Otto–Bliesner B L, Brady E C, Clauzet G, Tomas R, Levis S, Kothavala Z. 2006. Last glacial maximum and Holocene climate in CCSM3. Journal of Climate, 19 (11): 2 526–2 544.

    Article  Google Scholar 

  • Otto–Bliesner B L, Brady E C. 2010. The sensitivity of the climate response to the magnitude and location of freshwater forcing: last glacial maximum experiments. Quaternary Science Reviews, 29 (1–2): 56–73.

    Article  Google Scholar 

  • Peltier W R. 2004. Global glacial isostasy and the surface of the ice–age earth: the ICE–5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 32 (1): 111–149.

    Article  Google Scholar 

  • Pelto B M. 2014. Sedimentological, Geochemical and Isotopic Evidence for the Establishment of Modern Circulation Through the Bering Strait and Depositional Environment History of the Bering and Chukchi Seas During the Last Deglaciation. University of Massachusetts Amherst, Massachusetts, USA.

    Google Scholar 

  • Saenko O A, Schmittner A, Weaver A J. 2004. The atlantic–pacific seesaw. Journal of Climate, 17 (11): 2 33–2 38.

    Article  Google Scholar 

  • Sandal C, Nof D. 2008. The collapse of the Bering Strait ice dam and the abrupt temperature rise in the beginning of the holocene. Journal of Physical Oceanography, 38 (9): 1 979–1 991.

    Article  Google Scholar 

  • Saunders P M. 1995. The Bernoulli function and flux of energy in the ocean. Journal of Geophysical Research, 100 (C11): 22 647–22 648.

    Google Scholar 

  • Serreze M C, Barrett A P, Slater A G, Woodgate R A, Aagaard K, Lammers R B, Steele M, Moritz R, Meredith M, Lee C M. 2006. The large–scale freshwater cycle of the Arctic. Journal of Geophysical Research, 111 (C11): C11010.

    Book  Google Scholar 

  • Smith R, Gent P. 2002. Reference Manual for the Parallel Ocean Program (POP) Ocean Component of the Community Climate System Model (CCSM2.0 and 3.0). Technical Report LA–UR–02–2484. Los Alamos National Laboratory, Los Alamos, NM.

    Google Scholar 

  • Sprintall J, Wijffels S E, Molcard R, Jaya I. 2009. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. Journal of Geophysical Research, 114 (C7): C07001.

    Google Scholar 

  • Stammer D, Wunsch C, Giering R, Eckert C, Heimbach P, Marotzke J, Adcroft A, Hill C N, Marshall J. 2003. Volume, heat, and freshwater transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. Journal of Geophysical Research, 108 (C1): 3007.

    Article  Google Scholar 

  • Starr V P. 1951. Applications of energy principles to the general circulation. In: Byers H R, Landsberg H E, Wexler H, Haurwitz B, Spilhaus A F, Willett H C, Houghton H G eds. Compendium of Meteorology. American Meteorological Society, Boston, USA. p.568–574.

  • Talley L D. 2003. Shallow, intermediate, and deep overturning components of the global heat budget. Journal of Physical Oceanography, 33 (3): 530–560.

    Article  Google Scholar 

  • Trenberth K E, Caron J M. 2001. Estimates of meridional atmosphere and ocean heat transports. Journal of Climate, 14 (16): 3 433–3 443.

    Article  Google Scholar 

  • Trenberth K E, Solomon A. 1994. The global heat balance: heat transports in the atmosphere and ocean. Climate Dynamics, 10 (3): 107–134.

    Article  Google Scholar 

  • Warren B A. 1999. Approximating the energy transport across oceanic sections. Journal of Geophysical Research, 104 (C4): 7 915–7 919.

    Google Scholar 

  • Warren B A. 2006. The first law of thermodynamics in a salty ocean. Progress in Oceanography, 70 (2–4): 149–167.

    Article  Google Scholar 

  • Woodgate R A, Aagaard K, Weingartner T J. 2005. A year in the physical oceanography of the Chukchi Sea: moored measurements from autumn 1990–1991. Deep Sea Research Part II: Topical Studies in Oceanography, 52 (24–26): 3 116–3 149.

    Google Scholar 

  • Woodgate R A, Aagaard K. 2005. Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophysical Research Letters, 32 (2): L02602.

    Book  Google Scholar 

  • Woodgate R A, Weingartner T J, Lindsay R. 2012. Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophysical Research Letters, 39 (24): L24603.

    Book  Google Scholar 

  • Woodgate R A, Weingartner T, Lindsay R. 2010. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea–ice retreat. Geophysical Research Letters, 37 (1): L01602.

    Book  Google Scholar 

  • Yang H J, Li Q, Wang K, Sun Y, Sun D X. 2015a. Decomposing the meridional heat transport in the climate system. Climate Dynamics, 44 (9–10): 2 751–2 768.

    Google Scholar 

  • Yang H J, Zhao Y Y, Liu Z Y, Li Q, He F, Zhang Q. 2015b. Heat transport compensation in atmosphere and ocean over the past 22,000 Years. Scientific Reports, 5: 16 661.

    Article  Google Scholar 

  • Zheng Y X, Giese B S. 2009. Ocean heat transport in simple ocean data assimilation: structure and mechanisms. Journal of Geophysical Research, 114 (C11): C11009.

    Google Scholar 

Download references

Acknowledgement

We thank the Earth System Grid Federation and the MARGO group for sharing their data with the public. We thank YANG Haijun, LI Qing, and WANG Kun from Beijing University for their help with thecalculations of heat transport. We also thank two anonymous reviewers, LI Ziguang, GUO Yongqing, and ZHANG Cong for their valuable advice. We also thank Liwen Bianji, Edanz Group China (www. liwenbianji.cn), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopei Lin.

Additional information

Supported by the China’s National Key Research and Development Project (No. 2016YFA0601803), the National Natural Science Foundation of China (Nos. 41490641, 41521091, U1606402), and the Qingdao National Laboratory for Marine Science and Technology (No. 2017ASKJ01)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Lin, X. Contributions of the Bering Strait throughflow to oceanic meridional heat transport under modern and Last Glacial Maximum climate conditions. J. Ocean. Limnol. 37, 398–409 (2019). https://doi.org/10.1007/s00343-019-8062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8062-8

Keyword

Navigation